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Abstract

Solutions for the three-dimensional wave equation in an annular duct are represented in terms of Fourier–Bessel

modes, each obeying a one-dimensional dispersive wave equation. An exact nonreflecting boundary condition, nonlocal

in time but local in space, is derived for each mode. Since, in most applications, the number of propagating modes is a

small finite subset of all the modes, the present condition yields a computationally efficient scheme. Convergence of the

solution depends on the radial eigenvalues which characterize the dispersion of the propagating duct modes. For pe-

riodic forcing, convergence analysis shows that the solution tends toward its asymptotic limit as the reciprocal of the

square root of time. Near a duct mode cut-on, the computational time required for convergence is proportional to the

reciprocal of the square of the group velocity. The boundary condition is implemented numerically and tested by

computing the propagation of dispersive waves with various frequencies and comparing the results with the analytic

solution. Two local boundary conditions are also implemented and their performance relative to the nonlocal boundary

condition is studied. Significant improvements in accuracy are observed by using the present boundary condition near

cut-on. Numerical results also show that the rate of convergence of the solution to a time-periodic solution significantly

decreases as the group velocity of the incident waves becomes small, consistent with the analytic results.

� 2004 Elsevier Inc. All rights reserved.

1. Introduction

In many applications, such as aeroacoustics and structural vibrations, the flow domain is characterized
by a finite source region where complex flow-structure interactions occur and an unbounded propagation

region. In order to complete the formulation of the associated initial-value-problem and specify the correct

solution, a causality condition is applied at infinity. For numerical solutions, the computational domain is

finite and bounded by artificial surfaces along which nonreflecting boundary conditions must be applied to

satisfy the causal condition at infinity. For external problems, the inflow/outflow boundary encloses the

entire flow domain. Engquist and Majda [1,2] derived an exact nonreflecting boundary condition for the
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two-dimensional wave equation in an external domain consisting of the half-space, xP 0. They showed that

the exact boundary condition is nonlocal in both space and time because it requires information over all of

space and time. In order to derive a more practical condition, they derived a series of local approximations
to the exact condition. Bayliss and Turkel [3] generalized the Sommerfeld radiation condition and derived a

series of local boundary conditions based on the asymptotic solution to the wave equation in cylindrical

and spherical domains. The accuracy of their conditions depends upon the distance to the boundary being

large relative to the dimensions of the source region. Grote and Keller [6] derived an exact boundary

condition for the three-dimensional wave equation by representing the solutions at the outer spherical

boundary in terms of spherical harmonics. For solutions with a finite number of spherical harmonics, they

showed that their exact condition is local in both space and time. These local conditions take advantage of

the nondispersive character of waves propagating in external domains.
Thompson [4,5] developed and applied nonreflecting boundary conditions to hyperbolic systems such as

the Euler equations by utilizing the method of characteristics. These boundary conditions are exact for

nondispersive waves in one dimension and work well for those waves which propagate in a direction normal

to the boundary but are totally reflective for waves which are nearly parallel to the outflow boundary.

Applying the methodology of Engquist and Majda to the two-dimensional linearized Euler equations, Giles

[8] derived approximate local boundary conditions for the inflow/outflow boundaries. More recently,

several authors [10–14] have derived, a series of increasingly accurate local boundary conditions for the

linearized Euler equations and have examined the effects of discretization on the inflow/outflow conditions.
Although the accuracy of these conditions improves with the order of the expansion, they all become highly

reflective for waves which propagate nearly parallel to the outflow boundary.

Relatively little work has focused on time-dependent boundary conditions for internal geometries such

as circular or annular ducts. These problems are characterized by dispersive waves due to the presence of

solid boundaries. Exact boundary conditions in two and three dimensions have been derived for time-

harmonic problems where the dominant frequency is known a priori [7–9,15]. In this case, exact conditions

are derived utilizing an eigenfunction expansion for the pressure and a convection condition for the other

flow variables [9,15]. The advantage of this approach is that the pressure is continuous, even across wakes.
Moreover, even at high frequencies, there is only a finite number of propagating modes, the remainder of

the spectrum represents evanescent modes. Thus only a small number of eigenmodes are needed to rep-

resent the pressure field very accurately.

Although many problems of practical interest are characterized by a dominant frequency which is

known a priori, there are situations where this does not apply and, as a result, accurate nonreflecting

boundary conditions to the time-dependent wave equation need to be derived and implemented. Hagstrom

and Goodrich [18,19] have derived exact nonlocal boundary conditions to the wave equation and recent

work has examined local approximations to the nonlocal time operator which are computationally efficient
for implementation [20,21]. In the present paper, we extend the work of [9,15] to the time domain by

representing the solutions in terms of Fourier–Bessel modes and then we derive and implement an exact

nonreflecting boundary condition for the time-dependent modal wave equation. As in the boundary con-

ditions of Engquist and Majda [1] and Hagstrom [18], the condition is nonlocal in time. However, it is local

in space; its nonlocal space dependence is transferred to the Fourier–Bessel space. Since for most cases a

finite number of modes can accurately represent the pressure field, our formulation reduces the space de-

pendence dimension of the boundary condition to a small finite number, leading to a compuatationally

efficient scheme. In Section 2, we formulate the initial-boundary-value problem. In Section 3, we show that
the three-dimensional wave equation can be reduced to a series of one-dimensional dispersive wave

equations. In Section 4, we derive an exact nonreflecting boundary condition which is nonlocal in time. The

nonlocal time operator is shown to be equivalent to Hagstrom’s condition [18]. We then apply our con-

dition to time-periodic waves and analytically determine the rate of convergence to a time-periodic state. In

Section 5, we implement the boundary conditions in a numerical scheme and compare the convergence and
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accuracy of the nonlocal boundary conditions with the local conditions of Engquist and Majda [1]. In

Section 6, the numerical results are discussed.
2. Formulation

In many problems involving fluid–structure interaction, flow nonlinearities and nonuniformities are

confined to a local region which we denote as the inner region, Vi . Outside of the inner region there are two

outer regions, V , where the flow can be adequately described by a small perturbation to a uniform mean

flow, U�, where the subscripts � denote the mean flow in the downstream and upstream outer regions,

respectively. The outer region extends to 1ð�1Þ downstream (upstream) of the inner region. For a non-
heat conducting isentropic flow, the linearized Euler equations can be cast in the outer region as the

convective wave equation

D2
0

Dt2

�
� c2r2

�
pð~x; tÞ ¼ 0; ~x 2 V ; ð2:1Þ

where

D0

Dt
� o

ot
þ U

o

ox
;

where c is the speed of sound and the subscripts � have been dropped for simplicity.

The objective of the present paper is to derive and numerically implement exact nonreflecting boundary

conditions for (2.1) in an annular duct geometry. We introduce the cylindrical coordinates, ðx; r; hÞ in the

axial, radial and circumferential directions, respectively. For simplicity, we consider impermeable boundary

conditions at the hub and tip of the annular duct

op
or

¼ 0; r ¼ rh; rt: ð2:2Þ

The initial conditions for (2.1) are given by

pð~x; 0Þ ¼ cð1Þð~xÞ; opð~x; 0Þ
ot

¼ cð2Þð~xÞ ~x 2 V : ð2:3Þ

Note that often the precise initial conditions for an application are not known. Fortunately, the influence of

the initial conditions on the solution diminishes with time and, in what follows, we consider their influence

on the long time solution to be negligible. In order to complete the formulation of the initial-boundary-

value problem, a physical causality condition must be added at infinity. This condition states that the
energy associated with the waves must propagate away from the source to infinity.

We nondimensionalize the length, velocity and time with respect to the tip radius, rt, the speed of sound,

c and c=rt, respectively. Thus the convective operator becomes

D0

Dt
� o

ot
þMx

o

ox
;

where Mx corresponds to the axial Mach number in aeroacoustic applications.
For computation, the numerical solution is obtained in the inner region, Vi . This region is truncated to a

finite length which is bounded by two cross sections, oV �. The outer regions denoted by, V , extend to plus

and minus infinity. A schematic of the flow domain is shown in Fig. 1. The figure shows the infinite outer

region, V , where the wavy lines in the figure are meant to denote that the outer boundary, oV �
1 extends to



Fig. 1. Schematic of the computational domain.
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�1. Analytical solutions in the outer region which satisfy causality are then used to obtain nonreflecting
boundary conditions at oV�. This restricts the class of solutions to those where the energy propagates out of

the inner domain. To model noise sources which lie outside the inner regions, a condition may be imposed

at both boundaries, oV�, which represent incident waves propagating into the inner region. We further seek

to derive nonreflecting boundary conditions involving only first-order derivatives

Bip� ¼ 0; Bepþ ¼ 0; ~x 2 oV �; ð2:4Þ

where i and e denote the inlet and exit of the inner domain, respectively. The system ((2.1)–(2.4)) results in

an initial-boundary-value problem whose solution coincides in V with the infinite domain problem.
3. Reduction to the one-dimensional wave equation

We assume pðx; tÞ can be uniformly expanded in terms of the annular duct eigenfunctions

pðx; r; h; tÞ ¼
Xn¼1

n¼1

Xm¼1

m¼�1
pmnðx; tÞeimhRmnðrÞ; ð3:5Þ

where the Fourier–Bessel coefficient, pmn, is given by

pmnðx; tÞ ¼
1

2pKmn

Z 1

rh

Z 2p

0

r�RmnðrÞe�imhpðx; r; h; tÞdhdr; ð3:6Þ

where

Kmn ¼
Z 1

rh

rjRmnj2 dr

and the orthogonal eigenfunctions, RmnðrÞ, are a combination of Hankel functions [16]

RmnðrÞ ¼ H ð1Þ
m ðkmnrÞ �

dH ð1Þ
m ðkmnrhÞ=dr

dH ð2Þ
m ðkmnrhÞ=dr

H ð2Þ
m ðkmnrÞ; ð3:7Þ

where kmn is the eigenvalue associated with the radial eigenfunction, Rmn. The eigenvalue is determined by

the condition

H 0ð1Þ
m ðkmnrhÞ H 0ð2Þ

m ðkmnrhÞ
H 0ð1Þ

m ðkmnÞ H 0ð2Þ
m ðkmnÞ

�����
����� ¼ 0: ð3:8Þ
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For a circular duct,

rh ¼ 0; lim
rh!0

H 0ð1Þ
m ðkmnrhÞ

H 0ð2Þ
m ðkmnrhÞ

¼ �1; Rmn ! 2JmðkmnrÞ

and (3.8) reduces to

J 0
mðkmnÞ ¼ 0: ð3:9Þ

Substituting (3.5) into (2.1) we obtain a one-dimensional dispersive wave equation for each mode

pmnðx; tÞ

D2
0

Dt2

�
� o2

ox2
þ k2mn

�
pmnðx; tÞ ¼ 0: ð3:10Þ

We have reduced the problem to a series of one-dimensional, convected wave equations for each Fourier–

Bessel coefficient. If we introduce a combination of the Lorentz and Prandtl–Glauert transformation,
~x ¼ fbðx�MxtÞ; r; hg, ~t ¼ bt and ~kmn ¼ kmn=b, where b2 ¼ 1�M2

x , we obtain the one-dimensional disper-
sive wave equation

o2

o~t2

"
� o

o~x2
þ ~k2mn

#
pmnð~x;~tÞ ¼ 0: ð3:11Þ

Eq. (3.11) is also known as the telegraph equation. In order to derive a nonreflecting boundary condition,

we must find an outgoing solution to (3.11). In the next section, we derive an exact nonreflecting boundary
condition for (3.11) and for simplicity of notation we drop the tildes.
4. Derivation of an exact boundary condition

The reduced initial boundary value problem takes the form

o2

ot2

�
� o2

ox2
þ k2mn

�
pmnðx; tÞ ¼ 0; ð4:12Þ

and is subject to the initial conditions

pmnðx; 0Þ ¼ cð1ÞmnðxÞ;
opmnðx; 0Þ

ot
¼ cð2ÞmnðxÞ; ð4:13Þ

where cð1Þmn ; c
ð2Þ
mn are the Fourier–Bessel coefficients of c1; c2 and the nonreflecting boundary conditions at the

inlet and exit of the inner domain

Bipmnðxi; tÞ ¼ 0; Bepmnðxe; tÞ ¼ 0; ð4:14Þ

where x ¼ xi lies at oV� and x ¼ xe lies at oVþ.
In what follows, we derive the expressions for Bi;Be. We define the Laplace transform of the Fourier–

Bessel coefficient, pmn, as

Lpmn ¼ p̂mnðx; sÞ ¼
Z 1

0

e�stpmnðx; tÞdt: ð4:15Þ
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Substituting (4.15) into (4.12), (4.13) and Eq. (4.12) takes the form,

d2p̂mn
dx2

� ðk2mn þ s2Þp̂mn ¼ �ðscð1ÞmnðxÞ þ cð2ÞmnðxÞÞ: ð4:16Þ

Note that cð1Þmn ; c
ð2Þ
mn depend upon the initial condition used. Since the initial conditions depend upon the

particular application and, in many cases, the long-time solution is independent of the initial conditions, we
consider only the homogeneous solution.

The homogeneous solution is

p̂mn ¼
~AðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2mn þ s2

q e�ðk2mnþs2Þ1=2ðx�x0Þ þ
~BðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2mn þ s2

q eðk
2
mnþs2Þ1=2ðx�x0Þ; ð4:17Þ

where x0 ¼ ðxi; xeÞ is the location of the inflow/outflow boundary. In order to obtain finite solutions for

jxj ! 1 we require ~BðsÞ ¼ 0 for ðx� xeÞ > 0 and ~AðsÞ ¼ 0 for ðx� xiÞ < 0. Note that the inverse Laplace

transform,

L�1 e�
ffiffiffiffiffiffiffiffiffiffi
s2þk2mn

p
jx�x0jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ k2mn

q
8><
>:

9>=
>; ¼ Hðt � jx� x0jÞJ0ðkmn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � ðx� x0Þ2

q
Þ; xP x0 ð4:18Þ

where H is the Heaviside function [17]. Using the convolution theorem,

L

Z t

0

p1ðsÞp2ðt
�

� sÞds
�

¼ p̂1ðsÞp̂2ðsÞ ð4:19Þ

the expressions for the downstream and upstream homogeneous solutions are

pþmnðx; tÞ ¼
Z t�ðx�xeÞ

0

aþðt0ÞJ0ðkmn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt � t0Þ2 � ðx� xeÞ2

q
Þdt0; x > xe; ð4:20Þ
p�mnðx; tÞ ¼
Z t�ðxi�xÞ

0

a�ðt0ÞJ0ðkmn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt � t0Þ2 � ðxi � xÞ2

q
Þdt0; x < xi: ð4:21Þ

The functions a� are the inverse Laplace transforms of ~AðsÞ and ~BðsÞ, respectively. They will now be de-

termined in terms of the first-order derivatives of the pressure. Note that

opþmn
ox

¼ �aþðt � ðx� xeÞÞ þ kmnðx� xeÞ
Z t�ðx�xeÞ

0

aþðt0Þ
J1ðkmn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt � t0Þ2 � ðx� xeÞ2Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt � t0Þ2 � ðx� xeÞ2

q dt0; x > xe

ð4:22Þ
op�mn
ox

¼ a�ðt � ðxi � xÞÞ � kmnðxi � xÞ
Z t�ðxi�xÞ

0

a�ðt0Þ
J1ðkmn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt � t0Þ2 � ðxi � xÞ2

q
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðt � t0Þ2 � ðxi � xÞ2
q dt0; x < xi: ð4:23Þ

Hence

op�mn
ox

¼ �aðtÞ; x ¼ xe; xi: ð4:24Þ
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Substituting (4.24) into (4.20) and (4.21), we obtain conditions at x0 ¼ xi; xe,

pmnðx0; tÞ ¼ �
Z t

0

opmn
ox

� �
x0

J0½kmnðt � t0Þ�dt0: ð4:25Þ

where the minus (plus) implies x0 ¼ xeðx0 ¼ xiÞ. Eq. (4.25), provides the closure conditions for the initial-

boundary-value problems ((4.12)–(4.14)). We note that (4.25) is nonlocal in time. It is, however, local in

space. Thus the nonlocal space dependence of the total pressure, p, defined in (3.5) has been replaced by the

modes ðmnÞ in the Fourier–Bessel space. However, since the propagating waves in a duct often consist of a
small finite subset of all the modes, the dimension of the condition space dependence for the total pressure

is reduced significantly. This results in a considerable saving of computational time leading to an efficient

computational scheme.

We can express the boundary condition in a form similar to that of the method of characteristics and

other local boundary conditions. We differentiate (4.25) with respect to time and, after rearrangement, we

obtain an exact nonreflecting boundary condition involving first-order derivatives of the form

op�mn
ot

� �
x0;t

� op�mn
ox

� �
x0;t

¼ �kmn

Z t

0

op�mn
ox

� �
x0

J1 kmnðt
	

� t0Þ


dt0; ð4:26Þ

where the plus (minus) implies x0 ¼ xe ðx0 ¼ xiÞ. This form is similar to a relationship derived by Hagstrom

[18]. Note that for nondispersive waves kmn ¼ 0 and we obtain the usual characteristic condition,

op�mn
ot

� op�mn
ox

¼ 0: ð4:27Þ

Eq. (4.26) is a convenient analytical form for the boundary conditions because it shows the additional term

resulting from the dispersive nature of the problem and illustrates the difference between the exact

boundary condition and the often used characteristic boundary condition. Moreover, it shows that the

characteristic boundary conditions (4.27) and other local boundary conditions are not exact for dispersive

problems. This condition involves a time history of the derivative at the boundary. This is a consequence of
the property that dispersive waves travel with different phase speeds and thus information at the inflow

boundary will reach the outflow boundary at different times depending upon the wavelength of the acoustic

wave. Since most problems march in time from an arbitrary initial state, the boundary derivatives may not

be smooth for t small. To avoid this difficulty, we consider an alternate form of the boundary conditions for

subsequent numerical implementation.
4.1. Modified boundary condition for numerical implementation

The form of the boundary conditions in (4.25) is convenient for numerical implementation because the

spatial derivatives are integrated over time. This is useful because the spatial derivative at the exit boundary

can be inaccurate for small t if the initial condition is not sufficiently smooth and lead to numerical in-

stabilities. It is convenient for numerical implementation to express the wave Eq. (4.12) in terms of a system

of first-order equations. We write (4.12) in the form of two first-order equations:

op�mn
ot

� op�mn
ox

¼ /�
mn;

o/�
mn

ot
� o/�

mn

ox
þ k2mnp

�
mn ¼ 0:

ð4:28Þ
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Using (4.28) to express op�mn=ox in terms of /�
mn and op�mn=ot, substituting the expression in (4.25), integrating

by parts, and assuming p�mnð0Þ ¼ 0, we obtainZ t

0

f/�
mnðt0ÞJ0½kmnðt � t0Þ� þ kmnp�mnðt0ÞJ1½kmnðt � t0Þ�gdt0 ¼ 0: ð4:29Þ

These boundary conditions are convenient for numerical implementation since the variables /; pmn are
obtained directly from the numerical scheme described in (Section 5.1).

We have derived boundary conditions so that the solution to the wave equation is equivalent to the

infinite domain problem where fjxij; jxejg ! 1. We now show that the solution is unique. The proof is

similar to that of [22] and is given in Appendix A. The above results can be summarized by the following

theorem.

Theorem 1. If the initial value problem to the wave equation in the infinite domain has a unique smooth so-

lution, then so does the initial-boundary-value problem with the boundary condition, 4.29, for each mode. The

two solutions coincide in Vi .

4.2. Convergence analysis for time-harmonic problems

Here we consider problems with time-periodic forcing at the inlet plane. These problems are convenient

for studying the effectiveness of the nonreflecting boundary conditions and the numerical scheme since we

can derive the analytic solution and compare it to the numerical solution. In what follows, we examine the

convergence of (4.25) for time-periodic solutions. We first note that an oscillatory solution of the initial-

boundary-value problem ((4.12)–(4.14)) will be reached in the limit as t ! 1. It is therefore important to

establish how the solution reaches its asymptotic value since this will determine how fast the numerical

solution will converge to its time-periodic solution. In addition, the time-dependent problem has transient
solutions. Hence, the convergence to a periodic solution depends on the rate of decay of the transient waves.

Due to the linearity of the equations at the inlet and exit boundaries we can, without loss of generality,

consider a single harmonic forcing whose analytical solution is of the form

p�mn ¼ eiðk
�
mnx�xtÞ; ð4:30Þ

where k�mn ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � k2mn

q
and the plus (minus) sign is chosen based on downstream (upstream) energy

propagation. Note that when x2 > k2mn, k
�
mn is real and the solutions correspond to propagating waves which

carry acoustic energy and represent acoustic modes. When x2 < k2mn, k
�
mn is imaginary and the branch

k�mn ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2mn � x2

q
is chosen to eliminate the downstream (upstream) propagating growing solutions. The

remaining evanescent modes decay exponentially as they propagate and do not carry any acoustic energy.
For a given frequency, x, there is a finite number of acoustic modes. The decay rate of the evanescent

modes increases with their circumferential and radial mode orders ðmnÞ and as a result, a truncated rep-

resentation of the modal expansion consisting of the acoustic modes with a few weakly decaying evanescent

modes [9,15] can be used with great accuracy at the inlet/outlet boundaries of the computational domain.

The analysis is carried out for the case of time-periodic forcing, pmn ¼ expð�ixtÞ, at the inlet, xi ¼ 0. The

objective of the analysis is to determine the convergence of numerical solutions to time periodic solutions.

The right-hand side of (4.26) can be cast as

þi eþikmnx0 Iðt;x; kmnÞ;
where

Iðt;x; kmnÞ ¼ kmn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � k2mn

q Z t

0

e�ixt0J1ðkmnðt � t0ÞÞdt0; ð4:31Þ
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where it should be understood that the þ superscript has been dropped on kmn for convenience. For small t,
the integral Iðt;x; kmnÞ is very small and (4.26) shows that kmn � x. The solution is modified as t increases
and in the limit as t ! 1,

Iðt;x; kmnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � k2mn

q�
� x

�
e�ixt; ð4:32Þ

which yields the exact relation kmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � k2mn

q
. We can estimate the rate of convergence of the numerical

scheme by examining as t ! 1 the rate of convergence of the right-hand side of (4.26). This is done in

Appendix B using the stationary phase method and shows that for large kmnt, we have

opmn
ot

� �
x0;t

þ opmn
ox

� �
x0;t

¼ �ieþikmnx0 ðx
(

� kmnÞe�ixt � kmn
kmn

ffiffiffiffiffiffiffiffiffiffiffi
2

pkmnt

s
½ � ix sinðkmnt � p=4Þ

þ kmn cosðkmnt � p=4Þ�
)

þO
1

kmnt

� �
: ð4:33Þ

Eq. (4.33) shows that the rate of convergence to a time-periodic solution as implied from the boundary

condition scales with the reciprocal of the square root of kmnt. This slow convergence rate is an inherent

characteristic of the dispersive wave Eq. (4.12). In fact, if we examine the general solution (4.20) for a fixed
Fig. 2. The variation of the group velocity with the radial eigenvalue k. As the parameter k=x ! 1 the group velocity goes to zero. In

the plane wave limit where k=x ! 0 the group velocity goes to one.
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x > xe, the oscillatory solution is reached in the limit as t ! 1. For large t, the term

J0ðkmn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt � t0Þ2 � ðx� xeÞ2

q
Þ decays like 1=

ffiffiffiffiffiffiffiffi
kmnt

p
.

When kmn is small, near cut-on, expansion (4.33) is valid for xt � ðx=kmnÞ2, implying a rate of con-

vergence like 1=ðcg
ffiffiffiffiffi
xt

p
Þ , where we have introduced the group velocity, cg ¼ dx=dkmn ¼ kmn=x. This sug-

gests that near a cut-on mode the computational time required for convergence must be such that

xt � 1

c2g
: ð4:34Þ

In Fig. 2, the group velocity is plotted as a function of kmn=x and we see that as kmn=x ! 1, the group

velocity of the waves goes to zero. In this limit, we have spinning waves in the duct and the time it takes the

information at the inlet plane to pass out of the exit plane is infinite. Note we can also evaluate the integral,
IðtÞ, when kmn ! 0 and t is finite. In this case

IðtÞ � �ikmn

ffiffiffiffiffiffiffiffi
2xt
p

r
e�ixt: ð4:35Þ

Nondimensionalizing with respect to x, this result shows that near cut-on the contribution of the nonlocal

time operator is of the order of cg
ffiffiffiffiffi
xt

p
. Thus the contribution of the nonlocal operator will slowly modify

the solution as time increases. It is, however, essential to obtaining the correct long time solution especially
near cut-on frequencies. Local conditions such as the method of characteristics which neglect the time

history of the solution will not yield accurate results.
5. Numerical implementation

In order to implement the nonreflecting boundary condition, we truncate the eigenfunction expansion

for a finite number of modes ðm; nÞ

pðx; tÞ ¼
Xm¼Nh=2�1

m¼�Nh=2

Xn¼Nr

n¼1

pmnðx; tÞeimhRmnðqÞ; ð5:36Þ

where Nh;Nr are the number of radial and circumferential modes needed to represent pðx; tÞ. Since the

accuracy of the boundary condition depends on the accuracy with which we can compute each Fourier–

Bessel mode at the inlet/exit boundaries, in what follows, we compare the numerical solutions to the dis-

persive wave equation using the nonlocal condition derived in this paper with those obtained using various

local conditions [1].

5.1. Numerical implementation and discretization

In this section, we solve (4.28) using a second-order accurate scheme with the nonreflecting boundary

condition (4.29) imposed at the exit. We drop the subscripts ðm; nÞ for convenience and discretize (4.28).

Using the Lax–Wendroff method, we obtain

/hþ1
i ¼ /h

i þ ðdx/h
i � k2phi ÞDt þ ðdxx/h

i � k2/h
i ÞDt2=2;

phþ1
i ¼ phi þ ð/h

i � dxphi ÞDt þ ðdxxphi � k2phi ÞDt2=2;
ð5:37Þ

where i the spatial index and h is the time index.
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The spatial derivatives are approximated with the first- and second-order central difference operators

dxphi ¼ ðphiþ1 � phi�1Þ=ð2DxÞ;
dxxphi ¼ ðphiþ1 � 2phi þ phi�1Þ=ðDx2Þ:

ð5:38Þ

Using the trapezoidal rule to evaluate the continuous nonreflecting boundary conditions, Eq. (4.29), we

obtain the condition

/h
i ¼ �

XNt�2

h0¼1

ðjh0þ1
i þ jh0

i Þ; ð5:39Þ

where Kh0
i ¼ /h0

i 	 J0½kðth � th
0 Þ� þ kph

0
i J1½kðth � th

0 Þ� and Nt is the number of timesteps

At the inlet we impose incident acoustic disturbances. The incident disturbance is expressed

pIðtÞ ¼
Xn

l¼1

aþl e
�ixlt; ð5:40Þ

where l is the index of each acoustic wave with amplitude, aþl , and frequency, xl, that propagates into the
domain and the inlet plane lies in the axial plane, xi ¼ 0. The nonreflecting boundary condition at the inlet

is then

wh
i ¼ �

XNt�2

h0¼1

ðch0þ1
i þ ch

0

i Þ; ð5:41Þ

where wh
i ¼ ð o

ot � o
oxÞðphi � pIÞ, ch0i ¼ wh0

i 	 J0½kðth � th
0 Þ� þ kðph0i � pIÞJ1½kðth � th

0 Þ�.
Fig. 3. The reflection coefficients for the local boundary conditions, BC1 and BC2 as a function of the parameter k=x.
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5.1.1. Local boundary conditions

In order to examine the performance of the exact boundary condition, we implement several local

boundary conditions at the exit plane and compare the solutions for various values of the parameter k. Two
commonly used local conditions are

/ðx; tÞ ¼ 0 ð5:42Þ

and

o/
ot

� k2p ¼ 0: ð5:43Þ

These conditions will be referred to as BC1 and BC2 in the remainder of the text. They were derived in [1]
by making approximations in the limit k=x 
 1. Fig. 3 shows the reflection coefficient, R, for BC1 and BC2
Fig. 4. The time-dependent error is plotted as a function of time. The error is a measure of the difference between the long-time

analytic solution and the numerical solution. Each figure corresponds to the error convergence for different values of the parameter, k
and x ¼ p. The dotted curve, dot-dashed curve and the solid curve correspond to the error convergence for the numerical solution with

BC1;BC2 and the nonlocal boundary condition, respectively.
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where the reflection coefficient is defined as the ratio of the amplitude of the reflected and incident waves.

Note that as k=x ! 1 both conditions become perfectly reflecting and in the limit k=x ! 0 both conditions

are perfectly nonreflecting. The higher order accurate boundary condition BC2 has a smaller reflection
coefficient over a larger portion of the parameter space k=x.
6. Numerical results

In this section, we impose several different types of incident waves using three different exit boundary

conditions. The exact boundary condition, (4.29), and the two local boundary conditions (5.42), (5.43)

which we refer to as BC1 and BC2, respectively. At the inlet, we assume that no physical reflections occur
and thus impose, p ¼ pIðtÞ. The initial condition is chosen to be pðx; 0Þ ¼ 0 and op=ot ¼ 0. We consider

three different incident disturbances: (i) a case with a single acoustic wave where the long-time solution is

time-periodic, (ii) a case with multiple acoustic waves where the solution is time-periodic and (iii) a case
Fig. 5. The real part of the long-time numerical solution and the exact time-periodic solution is plotted in the domain. Each figure

shows the solution for different values of the parameter, k and x ¼ p. The dotted curve corresponds to the numerical solution with the

nonlocal boundary condition and the solid curve corresponds to the exact time-periodic solution.
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with multiple acoustic waves where the long-time solution is nearly periodic. To obtain a measure of the

convergence of the numerical scheme to the long-time exact solution, we define the time-dependent error

over the spatial domain as

EðtÞ ¼
Xi¼N

i¼1

kpei � phi k
kpei k

,
N ; ð6:44Þ

where N denotes the number of points in the computational domain and pei is the exact long-time solution

in the domain.

6.1. Time-periodic waves

We impose time-periodic waves, characterized by the frequency, x, at the inlet plane and the number of

points in the computational domain is N ¼ 41. In the first case, we propagate a single harmonic wave into
Fig. 6. The imaginary part of the long-time numerical solution and the exact time-periodic solution is plotted in the domain. Each

figure shows the solution for different values of the parameter, k and x ¼ p. The dotted curve corresponds to the numerical solution

with the nonlocal boundary condition and the solid curve corresponds to the exact time-periodic solution.
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the domain with an angular frequency, x ¼ p and consider four different problems with

k ¼ 1:0; 2:0; 2:5; 3:1. Note that for k ¼ 3:1 both BC1 and BC2 are highly reflective. In Fig. 4, we plot the

time-dependent global error versus time for each of the three boundary conditions and values of the pa-
rameter k. In the top left corner, k ¼ 1:0 and the performance of BC2 is comparable to the exact condition

in the limit as t becomes large. However, as k increases the exact condition shows a marked improvement

over the local conditions and the error is an order of magnitude smaller using the exact condition for

k ¼ 2:5; 3:1. Note also that as k increases the group velocity of the wave decreases and the results indicate

that the time needed to reach the time-periodic solution increases. This is consistent with the asymptotic

analysis in Section 4.2.

In Figs. 5 and 6 we present the real and imaginary parts of the solution for various values of k. The solid
line denotes the exact solution and the dotted line denotes the numerical solution at t ¼ tfinal using the exact
boundary condition where tfinal is determined based on the convergence of the numerical solution to the

time periodic solution. For all values of k, the agreement between the exact solution and the numerical
Fig. 7. The real part of the long-time numerical solution and the exact time-periodic solution is plotted in the domain. Each figure

shows the solution for different values of the parameter, k and x ¼ p. The dotted curve corresponds to the numerical solution with the

local boundary condition, BC2, and the solid curve corresponds to the exact time-periodic solution.
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solution is quite good. Note that the solution for k ¼ 3:1 varies slowly in x and is thus nonlocal. The largest

error is observed at the inlet and exit of the domain.

In Figs. 7 and 8, we present the real and imaginary parts of the numerical and exact solution for various
values of k. The solid line denotes the exact solution and the dotted line denotes the numerical solution

using the local boundary condition BC2 at t ¼ tfinal. For small values of k, the agreement between the exact

solution and the numerical solution is quite good. However, some discrepancy between the exact and

numerical solution is observed for k ¼ 2:5 and a significant error is observed for k ¼ 3:1.
Many problems are characterized by several dominant frequencies. In order to test the boundary con-

ditions for this class of problems, we impose an inlet forcing consisting of three time-periodic waves with

frequencies, x ¼ p; 1:2p, and 2p. We examine the effect of the parameter k on the numerical solution using

BC2 and the nonlocal boundary condition.
In Fig. 9(a)–(c), we show the time-dependent error and the real and imaginary parts of the solution for

k ¼ 2. In Fig. 9(a) the solid curve denotes the error using the exact boundary condition and the dotted curve
Fig. 8. The imaginary part of the long-time numerical solution and the exact time-periodic solution is plotted in the domain. Each

figure shows the solution for different values of the parameter, k and x ¼ p. The dotted curve corresponds to the numerical solution

with the local boundary condition, BC2 and the solid curve corresponds to the exact time-periodic solution.
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Fig. 9. The frequencies of each of the waves are x ¼ p; 1:2p and 2p. In each of the figures k ¼ 2:0. (a) In the left-most column, the

time-dependent error is plotted as a function of time. The solid and dotted curves correspond to the error using BC2 and the exact

boundary condition, respectively. (b) The middle column shows the real part of the exact solution, the numerical solution with BC2 and
the numerical solution with the exact boundary condition. The exact solution is denoted by the solid line, the numerical solution using

BC2 is denoted by the dots and the numerical solution with the exact boundary condition is denoted by the dashed line. (c) The right-

most column shows the imaginary part of the exact solution, the numerical solution with BC2 and the numerical solution with the exact

boundary condition. The exact solution is denoted by the solid line, the numerical solution using BC2 is denoted by the dots and the

numerical solution with the exact boundary condition is denoted by the dashed line.
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denotes the error using BC2. The long-time error with the exact boundary condition is approximately :002
and the error with BC2 is an order of magnitude larger, :02. Even though the error is much larger using BC2
it is still quite small. Figs. 9(b) and (c) show the real and imaginary parts of the numerical and exact so-

lutions. The exact solution is denoted by the solid line, the numerical solution using BC2 is denoted by the

dots and the numerical solution with the exact boundary condition is denoted by the dashed line. The

agreement between the exact solution and the numerical solutions is quite good using both boundary

conditions. However, slightly better agreement is observed between the numerical solution with the exact

boundary condition and the exact solution.

In Figs. 10(a)–(c), we show the time-dependent error and the real and imaginary parts of the solution for
k ¼ 3:1. In Fig. 10(a) the solid curve denotes the error using the exact boundary condition and the dotted

curve denotes the error using BC2. Note that the rate of decrease of the error is slower than that shown in

Fig. 9(a). This occurs because the group velocity of the waves is much smaller. As a result, it takes much

longer for the waves at the inlet to reach the exit of the domain. The long-time error with the exact

boundary condition is approximately :003 and the error with BC2 oscillates about a level which is several

order of magnitudes larger i.e., approximately :3. Fig. 10(b)–(c) show the real and imaginary parts of the

numerical and exact solutions. Again, the exact solution is denoted by the solid line, the numerical solution

using BC2 is denoted by the dots and the numerical solution with the exact boundary condition is denoted
by the dashed line. Here the difference between the numerical solution using BC2 and the exact boundary

condition is striking. Both the amplitude and the phase of the numerical solution are significantly modified
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Fig. 10. The frequencies of each of the waves are x ¼ p; 1:2p and 2p and k ¼ 3:1. (a) In the left-most column, the time-dependent error

is plotted as a function of time. The solid and dotted curves correspond to the error using BC2 and the exact boundary condition,

respectively. (b) The middle column shows the real part of the exact solution, the numerical solution with BC2 and the numerical

solution with the exact boundary condition. The exact solution is denoted by the solid line, the numerical solution using BC2 is denoted
by the dots and the numerical solution with the exact boundary condition is denoted by the dashed line. (c) The right-most column

shows the imaginary part of the exact solution, the numerical solution with BC2 and the numerical solution with the exact boundary

condition. The exact solution is denoted by the solid line, the numerical solution using BC2 is denoted by the dots and the numerical

solution with the exact boundary condition is denoted by the dashed line.
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by the local boundary condition. In contrast, the agreement between the numerical solution using the

nonlocal condition and the exact solution remains good.

6.2. Nearly periodic problems

In this section, we impose three time-periodic waves characterized by the frequencies, x ¼ p;
ffiffiffi
2

p
p;

ffiffiffi
3

p
p

at the inlet. In this case, the waves appear to be unrelated because the ratio of the frequencies is an irra-
tional number. We consider two different problems with k ¼ 2:0; 3:1 and compare the numerical solution

with the exact boundary condition and BC2. Note that for k ¼ 3:1 BC2 is highly reflective. In Fig. 11(a)–(c),

we show the time-dependent error and the real and imaginary parts of the solution for k ¼ 2.
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Fig. 11. The frequencies of each of the waves are x ¼ p;
ffiffiffi
2

p
p and

ffiffiffi
3

p
p. In each of the figures k ¼ 2:0. (a) In the left-most column, the

time-dependent error is plotted as a function of time. The dotted and solid curves correspond to the error using BC2 and the exact

boundary condition, respectively. (b) The middle column shows the real part of the exact solution, the numerical solution with BC2 and
the numerical solution with the exact boundary condition. The exact solution is denoted by the solid line, the numerical solution using

BC2 is denoted by the dots and the numerical solution with the exact boundary condition is denoted by the dashed line. (c) The right-

most column shows the imaginary part of the exact solution, the numerical solution with BC2 and the numerical solution with the exact

boundary condition. The exact solution is denoted by the solid line, the numerical solution using BC2 is denoted by the dots and the

numerical solution with the exact boundary condition is denoted by the dashed line.
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In Fig. 11(a) the solid curve denotes the error using the exact boundary condition and the dotted curve

denotes the error using BC2. The long-time error with the exact boundary condition is approximately :0005
and the error with BC2 is nearly two orders of magnitude larger, :02. Even though the error is much larger

using BC2 it is still quite small. One difference in the error convergence with BC2 is that the oscillations in

error do not contain a clear period. This is due to the frequencies chosen for the inlet forcing. Fig. 11(b)–(c)

show the real and imaginary parts of the numerical and exact solutions. The exact solution is denoted by

the solid line, the numerical solution using BC2 is denoted by the dots and the numerical solution with the

exact boundary condition is denoted by the dashed line. The agreement between the exact solution and the

numerical solutions is quite good using both boundary conditions. However, better agreement is observed

between the numerical solution with the exact boundary condition and the exact solution.
In Fig. 12(a)–(c), we show the time-dependent error and the real and imaginary parts of the solution for

k ¼ 3:1. Again, in Fig. 12(a) the solid curve denotes the error using the exact boundary condition and the

dotted curve denotes the error using BC2. The long-time error with the exact boundary condition is ap-

proximately :006 and the error with BC2 oscillates about a level which is several order of magnitudes larger

i.e., approximately :3. Fig. 10(b)–(c) show the real and imaginary parts of the numerical and exact solu-

tions. Again, the exact solution is denoted by the solid line, the numerical solution using BC2 is denoted by

the dots and the numerical solution with the exact boundary condition is denoted by the dashed line. Here

the difference between the numerical solution using BC2 and the exact boundary condition is clear. Even
though the solution appears to be smooth at the exit, both the amplitude and the phase of the numerical
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Fig. 12. The frequencies of each of the waves are x ¼ p;
ffiffiffi
2

p
p and

ffiffiffi
3

p
p. In each of the figures k ¼ 3:1. (a) In the left-most column, the

time-dependent error is plotted as a function of time. The dotted and solid curves correspond to the error using BC2 and the exact

boundary condition, respectively. (b) The middle column shows the real part of the exact solution, the numerical solution with BC2 and
the numerical solution with the exact boundary condition. The exact solution is denoted by the solid line, the numerical solution using

BC2 is denoted by the dots and the numerical solution with the exact boundary condition is denoted by the dashed line. (c) The right-

most column shows the imaginary part of the exact solution, the numerical solution with BC2 and the numerical solution with the exact

boundary condition. The exact solution is denoted by the solid line, the numerical solution using BC2 is denoted by the dots and the

numerical solution with the exact boundary condition is denoted by the dashed line.
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solution are significantly modified by the local boundary condition. In contrast, the agreement between the

numerical solution using the nonlocal condition and the exact solution remains good.
7. Conclusions

An exact nonreflecting boundary condition is derived and tested for several classes of time-dependent

dispersive wave problems. The boundary condition exploits the result that in most problems of interest only

a finite number of waves carry acoustic energy to the far-field. As a result, an exact boundary condition

which is local in space but nonlocal in time is derived. Excellent agreement between the exact solution and

the numerical solution is obtained for incident waves with a wide range of incident angles to the exit

boundary. The numerical results for time-periodic waves are consistent with the asymptotic analysis which

shows that the rate of convergence of the numerical solution to a periodic solution decreases as the group

velocity of the wave decreases. The excellent numerical results for various incident waves suggest that these
boundary conditions can be accurately applied to various applications ranging from tonal and broadband

noise to ultrasonics. Moreover, the use of local conditions is limited to problems where the group velocity is

Oð1Þ. Unfortunately, in problems where the incident wave interacts or is scattered by a body the group

velocity of the waves at the boundary is not known a priori and the exact boundary condition must be used

if one wants to be certain of having small errors due to the boundary conditions. Future work will apply

these boundary conditions to scattering problems.
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Appendix A

Proof for Theorem 2.1. Let v1; v2 be the inner solutions which satisfy

D2
0

Dt2

�
�r2

�
v� ¼ f ; x 2 ½Vi 	 ð0; T Þ�

við~x; 0Þ ¼
ovi
ot

¼ 0; x 2 Vi ;

ðA:1Þ

and the boundary condition for each mode, (4.29), where Vi is the inner volume, f is a source term rep-

resenting inhomogeneities in the inner domain and i ¼ 1; 2. Let pi be the unique outer solutions in v of

((2.1)–(2.3)) with the boundary condition

v�i ¼ p�i ðA:2Þ

on x ¼ xe; xi, where the plus (minus) denotes the exit (inlet) boundary of the inner domain, respectively. Let
wi ¼ pi in V and wi ¼ vi in Vi . Then by (A.2), wi is continuous across the inflow/outflow boundaries,

x ¼ xi; xe as are its time, tangential and radial derivatives. Since vi; pi satisfy a second-order equation, it

suffices to show that the normal derivative of wi is continuous across the inflow/outflow boundary to show

that wi is a smooth solution of (A.1). Since pi ¼ vi at x ¼ xi; xe, thenZ t

0

op�i
ot

��
� op�i

ox

�
J0ðk�ðt � t0ÞÞ

�
dt0 ¼

Z t

0

ov�i
ot

��
� ov�i

ox

�
J0ðk�ðt � t0ÞÞ

�
dt0: ðA:3Þ

By continuity of
op�

i

ot on xe; xi then
op�

i

ox ¼ ov�
i

ox . Thus the normal derivative of wi is continuous on xi; xe. This
implies that w1;w2 are smooth solutions of the initial boundary value problem in the infinite domain. Thus,

if the infinite domain problem has a unique solution, w1 ¼ w2, completing the proof. h
Appendix B

In this appendix, we use the method of stationary phase to derive the long time solution of the

integral

Iðt; kmn;xÞ ¼ kmn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � k2mn

q Z t

0

e�ixt0J1½kmnðt � t0Þ�dt0: ðB:1Þ

Using the integral form of the Bessel function,

J1ðkmnðt � t0ÞÞ ¼ 1

2p

Z p

�p
eið�hþkmnðt�t0Þ sin hÞ dh: ðB:2Þ

Eq. (B.1) becomes

Iðt;x; kmnÞ ¼
kmn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � k2mn

q
2p

Z p

�p
eið�hþkmnt sin hÞ

Z t

0

eið�x�kmn sin hÞt0 dt0 dh: ðB:3Þ

Integrating with respect to dt0, we obtain

Iðt;x; kmnÞ ¼
�1

2pi

Z p

�p

e�iðxtþhÞ

xþ kmn sin h
dh

�
þ 1

2pi

Z p

�p

eiðkmnt sin h�hÞ

xþ kmn sin h
dh

�
kmn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � k2mn

q
: ðB:4Þ
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The first integral in (B.4), I1ðtÞ, can be evaluated exactly and is given by

I1ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � k2mn

q
� x

� �
e�ixt: ðB:5Þ

The second integral for large kmnt, denoted I2ðtÞ, can be evaluated using the method of stationary phase.

Note that there are two stationary phase points p=2 and �p=2. Thus we have for the limit kmnt � 1,

I2ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
2

pkmnt

s
kmnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � k2mn

q ½kmn cosðkmnt � p=4Þ � ix sinðkmnt � p=4Þ� þO
1

kmnt

� �
: ðB:6Þ
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